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Abstract: Scattering generally worsens the condition of inverse problems, with the severity
depending on the statistics of the refractive index gradient and contrast. Removing scattering
artifacts from images has attracted much work in the literature, including recently the use of static
neural networks. S. Li et al. [Optica 5(7), 803 (2018)] trained a convolutional neural network to
reveal amplitude objects hidden by a specific diffuser; whereas Y. Li et al. [Optica 5(10), 1181
(2018)] were able to deal with arbitrary diffusers, as long as certain statistical criteria were met.
Here, we propose a novel dynamical machine learning approach for the case of imaging phase
objects through arbitrary diffusers. The motivation is to strengthen the correlation among the
patterns during the training and to reveal phase objects through scattering media. We utilize
the on-axis rotation of a diffuser to impart dynamics and utilize multiple speckle measurements
from different angles to form a sequence of images for training. Recurrent neural networks
(RNN) embedded with the dynamics filter out useful information and discard the redundancies,
thus quantitative phase information in presence of strong scattering. In other words, the RNN
effectively averages out the effect of the dynamic random scattering media and learns more about
the static pattern. The dynamical approach reveals transparent images behind the scattering
media out of speckle correlation among adjacent measurements in a sequence. This method is
also applicable to other imaging applications that involve any other spatiotemporal dynamics.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Imaging through scattering media is considered challenging because the speckle-like raw images
are strongly ill-conditioned. Moreover, the scattering process is generally a stochastic and
nonlinear operation, meaning that the forward operator is not readily available for use in the
inverse algorithm. One standard approach is to characterize the random medium through the
transmission matrix (TM) [1–3]. Alternatively, other approaches involve angular scanning of the
illumination through the medium and then utilize the memory effect in the speckle correlations
[4–9].

Recently, machine learning algorithms have been used for image regression in a variety of
inverse problems [10–14] including imaging through scatter. The first effort, to our knowledge,
used a support vector machine (SVM) in 2016 [15], but it was subject to strong hallucinations
when tested outside its typical training domain. Subsequently, static, convolutional neural
networks (CNN) have been used to retrieve amplitude objects behind the random medium either
using a single [16] or multiple diffusers since 2018 [17]. This approach has attracted further
attention recently in even more challenging conditions, such as low photon limit [18], dynamical
emulsion scattered media [19] and CNN-SVM cascade classification case [20].
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Considerable amount of effort has also been devoted to image recognition through scattering
media, also starting circa 2015 [21,22]. Subsequent works have addressed, for example, motion
detection of figurines hidden by a sheet of paper [23], imaging through multi-mode fibers [24],
and exploiting diffusers as a form of spread-spectrum [25].

In this paper, we limit our scope to image regression, as opposed to recognition, in the
case where the diffuser is placed between the object and the camera, obscuring rather than
aiding the imaging process; in other words, we aim to reveal the object hidden behind the
scatter. For the first time, to our knowledge, we propose a recurrent neural network (RNN)
as a novel dynamical machine learning approach for this problem. The RNN has exhibited
good performance on exploiting correlations in spatial and temporal sequences for dynamics
applications, e.g. video frame prediction [26–30], shape inpainting [31–33], depth map prediction
[34,35], or multi-dimensional segmentation [36–38]. Most of these works make use of the
spatiotemporal dynamics, and thus the RNN acts along the temporal and/or spatial axis. The
present paper is based on the previous studies on dynamical sequences with the RNN [39–43].

We impart the dynamics to the network with a diffuser that rotates on-axis for several different
angles, and thus corresponding speckle measurements sequentially form an angular sequence as
shown in Fig. 1. Unlike the static neural network in [17] where object-measurement pairs with
different realizations of the diffuser are randomly batched during the training process, with the
RNN the multiple measurements of the same object remain in the same batch and contribute to
training collectively in a sequential order. This way speckle correlations among the multiple
measurements can be more strongly learned as priors.

Fig. 1. Collimated beam illuminates a phase object, and the diffracted optical field is
strongly scattered by a diffuser, which is rotated on-axis for several different angles. For each
angle of the rotation, speckle measurements are recorded by a camera, and they are processed
by our proposed recurrent neural network architecture, hence the reconstruction. Red bold
arrows indicate the physical propagation, and black bold ones denote the computational
pipeline.

In the following sections, we first provide in-depth details on our optical apparatus for
experimental data acquisition and the RNN architecture in Section 2. Next, in Section 3, we
share the results on several generalization tasks: (1) seen angles of the rotation with unseen
objects (3.1), (2) unseen angles with unseen objects (3.2), (3) cross-domain generalization along
starkly different priors (3.3), and (4) the effect of randomizing measurements in a sequence (3.4).
Concluding thoughts are in Section 4.

2. Methods

2.1. Experiment

Transparent objects, in this paper, are realized with a transmissive spatial light modulator (SLM;
Holoeye LC2012, 36 µm pixel pitch, 1024 × 768) in phase modulation mode – although it is not
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perfectly pure-phase, as there is a coupled amplitude modulation approximately within a range
between [0.95, 1.15]. Angles of two linear polarizers in Fig. 2 are carefully chosen to maximize
the phase depth of the SLM up to 4.5 rad and to minimize the spurious amplitude modulation.

Fig. 2. Proposed optical apparatus with the visible-wavelength laser (λ = 633 nm). POL:
linear polarizer, OBJ: objective lens, I: iris, CL: collimating lens, SLM: transmissive spatial
light modulator, L: lens. z1 = 70 mm, z2 = 30 mm.

A diffuser (Thorlabs DG10-600) is mounted on a motorized precision rotation stage (Thorlabs
PRM1Z8) for the on-axis rotation of the diffuser. It is rotated for 20 degrees with a 1◦-degree
increment, and thus the number of measurements in each sequence is 20. The diffuser is placed
at z1 = 70 mm downstream from the image plane, where the image of a phase object on the SLM
is delivered with a 3 : 2 telescope (fL1 = 150 mm, fL2 = 100 mm).

Speckle measurements are recorded with a CMOS camera (Basler A504k, 12 µm pixel pitch,
1280 × 1024), placed after another z2 = 30 mm defocus from the diffuser. Integration time per
frame is set to be 800 µs and the background is subtracted from each measurement.

2.2. Computational architecture

Speckle measurements of the same phase object form an angular sequence along the angular axis
of the rotation of the diffuser. Each sequence is first encoded by two down-residual blocks (DRB)
as shown in Fig. 3(a). The DRB itself contains several convolutional layers with residual pathways,
adopted from [39,44]. The reason is that residual learning is known to improve generalization in
deep networks [45]. This encoding process before a recurrent block extracts useful features out
of raw images and reduces the number of trainable parameters thereby facilitating the training
process [46–48].

As recurrent block we chose the Gated Recurrent Unit (GRU) [49], because it has fewer
parameters than the older and wider-used alternative Long-Short Term Memory (LSTM) [50]
without compromising performance. The GRU consists of two gates, i.e. reset and update
gates, with fully connected layers Wr, Ur, Wz, Uz, W, and U whereas LSTM has more complex
computational path. We apply one modification on the original design GRU that the native tanh
activation function is now substituted with ReLU [39,51–53]. The governing equations of the
modified GRU are

rn = Wr ∗ xn + Ur ∗ hn−1 + br

zn = Wz ∗ xn + Uz ∗ hn−1 + bz

h̃n = ReLU (W ∗ xn + U ∗ (rn ◦ hn−1) + bh)

hn = (1 − zn) ◦ h̃n + zn ◦ hn−1,

(1)

where rn, zn are tensors of reset and update gates, respectively, and br, bz are biases for each
gate (∗ is the matrix-vector multiplication, and ◦ is the Hadamard product). Throughout
several recurrences, hidden features (hn) obtain useful information for reconstructions while the
redundancies are selectively discarded.

Although the n-th hidden feature hn is a nonlinear function of (n − 1) previous hidden features,
the previous history of inputs is weighted in favor of the most recent measurements, i.e. closer to
the n-th in the angular sequence [54]. To aggregate information from the hidden features, we
additionally adopt the dynamically weighted average on hn’s, whose weights on input features
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Fig. 3. (a) Layered diagram of our proposed recurrent neural network architecture, (b)
tensorial dimensions of each layer in a tabular view, and (c) an unrolled view of the network
with notations. DRB, URB, and RB stand for down-residual block, up-residual block, and
residual block, adopted from [44], whose details can be found in Fig. 8 in Appendix A. In
this paper, n = 1, 2, . . . , N (= 20) as 20 different angles of the on-axis rotation of the diffuser
are considered.

are dynamically determined according to their scores. It follows the convention of the additive
attention mechanism [54] as below.

en = tanh (Wehn) ,

αn = softmax (en) =
exp(en)∑︁N

n=1 exp(en)
,

n = 1, 2, . . . , N (=20),

(2)

where en and αn are the score and the normalized weight of n-th hidden feature, and thus the
output as a weighted average becomes

a =
N∑︂

n=1
αnhn. (3)

However, in practice, the learned weights αn end up being approximately equal, indicating
that there is no preferred diffuser orientations—as it should be. This means that we could have
replaced this dynamic weighting mechanism with a simple average; yet we chose to maintain the
approach of learning the αn’s for generality and as a sanity check.

Finally, the decoder is composed of an up-residual block (URB) and two residual blocks (RB)
that also contain several convolutional layers with residual pathways [44], and receives a to
restore its dimension to that of phase objects, thus the reconstruction f̂ of a phase object f .

2.3. Training and testing procedures

For training, 2400 phase objects are used with the validation split ratio of 1/6. Each training
sequence consists of 20 speckle measurements from 20 different angles of the on-axis rotation of
the diffuser (θ = 0◦, 1◦, . . . , 19◦). We make three separate groups of training datasets using three
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starkly different priors, i.e. MNIST, IC layout, and ImageNet, and the network is trained with
each of the training datasets. Negative Pearson correlation coefficient (NPCC) is used as training
loss function [16], and it is defined as

LNPCC

(︃
f , f̂

)︃
≡ −

∑︂
x,y

(︂
f (x, y) −

⟨︃
f
⟩︃)︂ (︂

f̂ (x, y) −
⟨︃
f̂
⟩︃)︂

√︄∑︂
x,y

(︂
f (x, y) −

⟨︃
f
⟩︃)︂2

√︄∑︂
x,y

(︂
f̂ (x, y) −

⟨︃
f̂
⟩︃)︂2

. (4)

We use the Adam optimizer [55] with initial learning rate of 10−3. The learning rate is halved
every time the validation loss plateaus for 5 epochs. The minimum learning rate is set to be 10−8.

Testing procedures vary according to each generalization task in Section 3. For the first task,
as we aim to see if the network can generalize for unseen phase objects with its trained weights,
we test the trained network with 100 angular sequences from 100 non-overlapping phase objects
with the same angles of rotation. We assess the results for each prior separately.

For the second task, we now test the trained network with 100 sequences from 100 unseen
phase objects and from partly or wholly different angles of the rotation, where we control the
percentage of measurements from unseen angles in each test sequence by 0, 25, 50, 75 and 100%.
Letting m be an integer, the sequences with m% of measurements from unseen angles consist of
measurements from the angles of

⌊︁m
5
⌋︁◦ ,

(︁
1 +

⌊︁m
5
⌋︁ )︁◦ , . . . ,

(︁
19 +

⌊︁m
5
⌋︁ )︁◦.

Next, on top of the second task, we further want to see if the network trained with one prior can
generalize with phase objects from different priors. For this task, we test three trained networks
with 100 angular sequences from 100 unseen phase objects of MNIST, IC layout, and ImageNet
[56] with measurements from 20 unseen angles (m = 100% or θ = 20◦, 21◦, . . . , 39◦) of diffuser
rotation. Thus, we get 9 cross-domain generalization cases.

Lastly, the final task is an extension of the first task in the sense that the network is trained
with sequences of measurements from seen angles in an increasing order, but we test it with
sequences of randomized order of measurements. Therefore, we use 100 angular sequences of
100 unseen phase objects with the same angles, i.e. m = 0% or θ = 0◦, 1◦, . . . , 19◦.

The computer used for both training and testing processes has Intel Xeon Gold 6248 CPU at
2.50 GHz with 27.5 MB cache, 384 GB RAM, and dual NVIDIA Volta V100 GPUs with 32 GB
VRAM.

3. Results

3.1. Seen angles with unseen phase objects

The trained recurrent networks are tested with sequences of measurements of unseen phase
objects from the same prior. Figure 4(a) shows qualitatively the progression of reconstructions
for each prior as the number of measurements in a test sequence increases, showing the visual
quality becoming similarly incrementally enhanced. This finding is quantitatively supported by
Fig. 4(b) using PCC as metric. Note that the network trained with IC layout database generalizes
the best, followed by MNIST and ImageNet.

3.2. Unseen angles with unseen phase objects

The previous generalization task involves test sequences of measurements from the same angles
of the rotation as the training sequences (or seen angles). Here, test sequences consist of
measurements from the different angles (or unseen angles). As previously mentioned in Section
2.3, the ratio of measurements from unseen angles to seen angles vary from 0% to 100%.
According to Fig. 5(a), the visual quality of reconstructions degrades as more measurements
from unseen angles are taken into account in test sequences, which is also quantitatively shown
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Fig. 4. Seen angles of the rotation with unseen phase objects. (a) Qualitatively shown
are the progressions of reconstructions according to the number of measurements in a test
sequence (n) for three different priors, i.e. MNIST, IC layout, and ImageNet. n ranges from 1
to 20 in our case. (b) Progressions in a quantitative view using Pearson correlation coefficient
(PCC) as a metric. Plotted are the means of PCC of 100 objects. (See Visualization 1 for
these progressions in a video format.)

in Fig. 5(b). Still, the network is capable of retrieving prominent features even when the
measurements are replaced in its entirety as long as the priors are restrictive enough, i.e. MNIST
and IC layout.

3.3. Cross-domain generalization

In this section we investigate the most restrictive generalization task, where the trained networks
are now tested with sequences of phase objects sampled from different prior. This is referred to
as cross-domain generalization. Here, measurements are totally from unseen angles (m = 100%
or θ = 20◦, 21◦, . . . , 39◦). The network trained with ImageNet database offers some level of
cross-domain generalizability to other databases as visually in Fig. 6(a). It is possible as the
deep neural networks trained with ImageNet are better generalizable [57]. As both IC layout
and MNIST databases are more restrictive than ImageNet, images from the network trained
with IC layout strongly resemble (“hallucinate”) the shape of IC designs, and those from the
MNIST-trained network are seen to be very sparse.

3.4. Effect of randomizing measurements in a sequence

The last section is an extension of Section 3.1. The only difference is how measurements are
ordered in test sequences. When training the network, measurements are aligned in an increasing
order of rotation angles; whereas for testing, we randomize the order of angles to assess the effect
of the randomization. Interestingly, in Fig. 7, the severity of the effect varies with the type of
database; namely, the degradation becomes more severe for less restrictive databases.

https://doi.org/10.6084/m9.figshare.13122743
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Fig. 5. Unseen angles of the rotation with unseen phase objects. (a) 0, 25, 50, 75, and 100%
of measurements in a test sequence are replaced with ones from unseen angles of the rotation.
Although the quality of the reconstructions degrade as the percentage of measurements from
unseen angles increases, progressions of two examples show fair generalizability even the
measurements are replaced with the unseen ones in its entirety. (b) The result is quantitatively
shown with PCC as a metric. Plotted is the mean of PCC of 100 objects.

Fig. 6. (a) Cross-domain generalization is qualitatively shown along three different priors.
The network trained with ImageNet database generalizes better than others, and (b) this
result is quantitatively shown by bar graphs with the means and 95% confidence intervals of
PCC of 100 objects.
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Fig. 7. The network is trained with image sequences composed of measurements in an
increasing order, i.e. n = 1, 2, . . . , 20, and tested with the sequences of the measurements in
either the same or a randomized order. (a) Visually, the network trained with MNIST is the
least affected by the order of the measurements, followed by IC layout and ImageNet, and (b)
it is quantitatively shown with bar graphs with the means and 95% confidence intervals of
PCC of 100 objects.

4. Conclusion

The recurrent neural network that we constructed and trained is capable of retrieving transparent
or pure-phase objects behind the random scattering media. Speckle measurements from different
angles of the on-axis rotation of the diffuser form a sequence, so speckle correlation among
adjacent measurements can be strongly learned by the training process. The RNN effectively
inverts the speckle patterns due to the dynamic scattering media and with help from the learned
prior; it reveals the correct static patterns, i.e. the test pure-phase objects. The trained recurrent
neural network is generalizable to unseen phase objects, and unseen angles of diffuser rotation.
When training priors are restrictive, the approach is generalizable even across different domains,
to some extent. We expect that this approach will offer insights to other imaging applications that
involve spatiotemporal dynamics combined with scattering.
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Appendix A. Additional details of the architecture

This section provides additional details of the RNN architecture in Fig. 3. DRB, URB and RB
consist of several convolutional layers with batch normalization, activation and dropout layers.
These blocks are adopted from [44].

Fig. 8. (a) Down-residual block (DRB), (b) Up-residual block (URB) and (c) Residual
block (RB) in Fig. 3. K and S denote the size of kernel and strides in convolutional layers.
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